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1. INTRODUCTION

An anti-lock brake system (ABS) is used to prevent lock-up of an automobile wheel at the
moment of an emergency brake so that good directional stability and short stopping
distance are ensured. The simplest dynamic model for ABS, i.e., the single-wheel ABS, is
a two-dimensional non-linear dynamical system with switching control, where the
relationship between the longitudinal friction coe$cient and slip is the most essential
non-linear factor. Under the action of the di!erent control laws, the ABS dynamics may
show various forms of closed orbits (limit cycles). Fling and Feston [1] presented an
anti-skid or anti-lock design approach on the basis of describing-function theory, in which
a non-linear compensatory is used to "x the amplitude and frequency of the desired
oscillation (stable small-amplitude limit cycle) in an anti-skid mode. Yeh [2] introduced the
PoincareH map concept into ABS dynamics to investigate the e!ects of various anti-lock
control laws on the limit cycle using numerical approach. Kuo [3] studied a four-phase
control scheme of ABS using the general expressions of the limit cycle in phase plane. Cheng
[4] investigated a three-phase control law of ABS using Yeh's approach [2].

In this work, a semi-analytical and semi-numerical approach is proposed to analyze the
periodic solutions and stability of the single-wheel ABS. The same assumptions as Kuo's [3]
are considered, which are the piecewise linear tyre model with two segments and the slow
variation of vehicle velocity. On the basis of these, the piecewise expressions for the periodic
solution in every interval are derived analytically, while the lengths of every interval and the
period of solution, etc. are found numerically, which are provided in symbol algebra
software MAPLE 4.0. The results obtained by the present approach are compared to the
numerical one. Taking account of the requirement for the analysis of coupling vibrations,
this work has also studied the harmonic solutions of the ABS.

2. NON-LINEAR DYNAMICAL MODEL FOR ABS

A practical ABS model is a complicated non-linear dynamical system including a number
of non-linear factors. In this paper, the single-wheel ABS model of Yeh [3] is used, which
has been adopted by many researchers, i.e.,
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where M is the total mass of vehicle, < the vehicle velocity, F
x
the tyre force between wheel

and road, I the moment of inertia of wheel, u the angular velocity of wheel, r the rolling
radius of wheel, ¹

b
the brake torque applied to wheel and ; the brake torque change rate.

The longitudinal friction F
x

can be expressed as

F
x
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where N is the normal force applied to wheel, g the gravitational acceleration, and k the
longitudinal friction coe$cient. A lot of experiments indicate that there exists a non-linear
relationship between k and the wheel slip S, which can be described by a continuous
non-linear function, a piecewise non-linear or a piecewise linear function.

The slip S is de"ned as
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In this study, the non-linear relationship between k and S is approximately expressed as
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In equation (3), generally, the change rate ; may have three di!erent constants, i.e.,
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In the pressure holding mode: ;"0, when ¹
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where H
1

and H
3

are the threshold values of prediction boundary P1 and reselection
boundary R3 [3] respectively.

In an ABS braking, generally, the variation of vehicle velocity< is much slower than that
of S, u and ¹

b
so that < can be considered as a constant when the periodic solutions of S,

u and ¹
b

are studied. In this case, equations (1)} (3) can be simpli"ed as usual ABS
dynamics equations [3]:
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where ¹
e

(S) is called the equilibrium torque, which represents the equilibrium solution
curve of ABS dynamics equations (8)} (9), and is de"ned as
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From equations (4), (6), (7), and (10), one can see that equations (8), (9) represent a
two-dimensional, piecewise-non-linear autonomous system. In equation (8), < is referred



LETTERS TO THE EDITOR 545
to as a constant, while the e!ect of slow variation of < on the ABS dynamics will be
discussed elsewhere.

3. PERIODIC SOLUTIONS OF SINGLE-WHEEL ABS

As stated above, the control action of an ABS is to hold the friction coe$cientk near its
peak value k

c
in braking to make the friction force F

x
reach a bigger value, and to keep the

wheel from being locked up. Under the control of the boundaries P1 and R3, an ABS may
form a closed trajectory 1P2P3P4P5P1 in the S}¹

b
phase plane, i.e., a limit cycle, as

shown in Figure 1, which can be obtained by numerically integrating equations (8), (9).
For periodic solutions of some low-dimensional, piecewise-linear dynamical systems

[5}7], a semi-analytical and semi-numerical approach seems to be more accurate, rapid and
e!ective than direct numerical integration, in which the solution in each time interval is
analytically expressed, while the unknowns are numerically solved from non-linear
algebraic equations. For the piecewise-non-linear system (8), (9) in this paper, however, it is
impossible to obtain an accurate analytical solution in each interval. In this study, on the
basis of an approximate assumption, a semi-analytical and semi-numerical method can be
used to "nd the periodic solutions of the ABS.

3.1. FORM OF LIMIT CYCLE

From Figure 1 it is known that the limit cycle is a clockwise cycling closed
trajectory, which can be regarded as one consisting of the following "ve time intervals:
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corresponds to a start point at the limit cycle, and

¹ is the cycle length around the limit cycle, i.e., the period of a steady solution of the ABS.
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3.2. APPROXIMATE ANALYTICAL SOLUTIONS OF ABS DYNAMICAL EQUATIONS

In equation (8), letting
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e
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Figure 1. The limit cycle in S}¹
b
phase plane.
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and di!erentiating equation (11) with respect to time, one has
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where the dot denotes (d/dt) ()), and the prime denotes (d/dS) ()). From equations (6) and (10)
it is found that ¹

e
(S) is a square function of S.
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3.3. TIME INTERVAL LENGTH ¹

j
AND PERIOD ¹

To determine every time interval length ¹
j
and the period of solution ¹, it is necessary to

use the following continuity and periodicity conditions:
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instead of from equations (13) and (14). Equation (16) can be deduced from dx/dS"!¹@
e
or

from equation (13) by letting the third term be zero.
From the above solving process one obtains that the solutions of the system are related to

the initial value of the point [S
1
(0), ¹

b1
(0)]. Hence, an iterative process is needed to
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converge to the "nal limit cycle. In this way, matching the solutions in the intervals forms
the periodic solution, and the period of the solution is given by
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In the next section, it is indicated that the periodic solution and the period can be found by
solving the "xed point of the PoincareH map.

4. STABILITY OF PERIODIC SOLUTIONS

The stability analysis of the periodic solution can be carried out by constructing the
PoincareH map [8]. In this work, constructing the PoincareH map is to "nd such a function
relationship: S
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To examine the stability of the periodic solution, it is necessary to "nd a "xed point of the
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which can be found by using the &&fsolve'' function of MAPLE V. Once S*
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every time interval ¹
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solution of the system can also be found by directly solving the "xed point of the PoincareH
map. The iteration solving the periodic solution in the above section is, in fact, just the
process that the PoincareH map converges to the "xed point.
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the stability of the periodic solution can be examined. If P@[S*
1
(0)](1, then the periodic

solution is stable and if P@[S*
1
(0)]'1, then the periodic solution is unstable. The derivative
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(0)] can be obtained by using the &&di! '' function of MAPLE V.

5. COMPUTATIONAL RESULTS

In this study, the parameters in reference [3] are used: I"2)16 kgm2, M"300 kg,
r"0)3 m,;
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Finding the periodic solution by the iterative method is "rst carried out. Letting
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Figure 2. Comparisons of approximate analytical results (**) and numerical results (s).
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period ¹"0)1575917115. As a result, we can obtain the approximate periodic solution
from equations (13) and (14) by the approach in this paper. The comparisons between the
approximate analytical results and the numerical results obtained by the improved Euler
method are given in Figure 2.

It is worth noting that the results of direct numerical integration are related to the time
step, i.e., the smaller the step, the closer to the approximate analytical results are the
numerical results. Obviously, the time step must be very small by direct numerical
integration to approach the accuracy of the approximate analytical results. As a result, it
must take quite a long time.

Using the method of "nding the "xed point of the PoincareH map, one has
S
5
(¹

5
)"S*

1
(0)"0)1453521862, ¹"0)1575917167, which agree with the results obtained

by the iterative method.
The derivative obtained by computing P@[S*

1
(0)]"0)062756277(1 shows that the

periodic solution of the system is stable.

6. MULTI-HARMONIC ANALYSIS OF ABS

Apparently, the periodic solutions of the ABS obtained in this paper are periodic
functions that may include several harmonics. Analyzing the composition and amplitude
distribution of the harmonics is important to study coupling vibrations between low and
high frequencies, and mechanic}hydraulic coupling vibrations in complicated ABS models,
as well as torsional vibrations in vehicle transmission systems.

The ABS model in this paper, as above, is a two-dimensional, piecewise-non-linear
autonomous system. The multi-harmonic analysis of the periodic solutions of the ABS can
be carried out using the simple and accurate HB-FFT method proposed by Choi and Lou
[9], which combines the harmonic balance method and fast Fourier transformation (FFT)
procedure.

The periodic solutions of the ABS can be represented by the Fourier series:
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Figure 3. Comparison of harmonic solutions (n, N
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"3) and approximate analytical

solution (**).
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where N
0

is the number of harmonics to be taken into account, u"2n/¹. Similarly, the
piecewise-non-linear equilibrium torque
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been obtained in equation (13). Hence, the coe$cients are obtained as unknowns using the
harmonic balance method. From equations (21) and (23), the Fourier coe$cients in
equation (24) ¹
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Substituting equations (21), (22) and (24) into equation (8) and using the harmonic
balance method will lead to the following 2N
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for n"1,2,N
0
. These 2N

0
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#2 unknowns are non-linear because

¹
e0

, a
n
and b

n
are each the square functions of the coe$cients S

0
, a

n
and b

n
. Once a set of

initial trial values of S
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be obtained by means of the iterative algorithm [9].
The initial trial values S

01
, a

n1
and b

n1
can be found from the "rst harmonic component

without regard to the other harmonics. Using the parameters and the results given in the
above section, we obtain the comparison of the time histories, i.e., the harmonic solutions
from equation (21) for N

0
"1, 2 and 3, respectively, and the approximate analytical

solution from equation (13), as shown in Figure 3.

7. CONCLUSIONS

In this study, a semi-analytical and semi-numerical approach is presented to solve the
periodic solutions of the ABS, which is a two-dimensional, piecewise-non-linear
autonomous system with boundary control. This approach, for the simple system in this
paper, is found to be very accurate and timesaving when compared with the direct
numerical integration, in which only the use of very small time step can capture the exact
switching point from one time interval to the other. Both the iterative procedure and the
PoincareH map can be used to "nd the periodic solutions. The stability of the periodic
solutions can be tested by using the derivative of the PoincareH map at the "xed point.

Using the HB-FFT method, the multi-harmonic analysis for the periodic solutions is
carried out. For the given parameters in this paper, three harmonics were found to be
adequate for good accuracy at a reasonable cost.
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